Problem set 2

Due at the beginning of recitation on Friday, September 18, 2015.

Problem 1: Constant subsequences.
Let \(\langle x_k \rangle_{k=0}^{\infty} \) be a sequence in \(\mathbb{R} \), and define a correspondence \(I : \mathbb{R} \rightarrow \mathbb{N} \) as
\[
I(x) = \{ k \in \mathbb{N} : x_k = x \}.
\]
Show that if there are \(x, x' \in \mathbb{R}, x \neq x' \) such that \(I(x) \) and \(I(x') \) are infinite, then \(\langle x_k \rangle_{k=0}^{\infty} \) does not converge.

Problem 2: Convergent differences.
Let \(\langle x_k \rangle_{k=0}^{\infty} \) and \(\langle y_k \rangle_{k=0}^{\infty} \) be sequences in \(\mathbb{R} \), where \(x_k \rightarrow x^* \) and \(y_k \rightarrow y^* \).

i. Prove that \(\langle x_k - y_k \rangle_{k=0}^{\infty} \rightarrow x^* - y^* \).

ii. Let \(x^* = y^* = c \). Show that any sequence \(\langle z_k \rangle_{k=0}^{\infty} \) with \(\min \{ x_k, y_k \} \leq z_k \leq \max \{ x_k, y_k \} \) for all \(k \in \mathbb{N} \) is such that \(z_k \rightarrow c \).

Problem 3: Problems with rationality.

i. Show by example that a countable intersection of dense open sets may not be open.

ii. Show that \([0,1] \cap \mathbb{Q} \) is not compact.

Problem 4: Sequential open intervals.
Suppose that \(\langle a_k \rangle_{k=0}^{\infty} \) and \(\langle b_k \rangle_{k=0}^{\infty} \) are monotone convergent sequences in \(\mathbb{R} \), \(a_k < b_k \) for all \(k \), and there is \(c \in \mathbb{R} \) such that \(a_k \rightarrow c \) and \(b_k \rightarrow c \). Show that if \(\cap_{k=0}^{\infty} (a_k, b_k) = \{ c \} \), then \(\langle a_k \rangle_{k=0}^{\infty} \) has a strictly increasing subsequence and \(\langle b_k \rangle_{k=0}^{\infty} \) has a strictly decreasing subsequence.

Problem 5: Cauchy subsequences.
Let \(\langle x_k \rangle_{k=0}^{\infty} \) be a Cauchy sequence.

i. For any \(k, j \in \mathbb{N} \), let \(y_{k,j} = x_{k+j} - x_k \). Show that there is \(y_k^* \) such that \(\langle y_{k,j} \rangle_{j=0}^{\infty} \rightarrow y_k^* \).

ii. Show that \(\langle y_k^* \rangle_{k=0}^{\infty} \) converges to 0.

iii. Let \(f : \mathbb{N} \rightarrow \{-1, 1\} \), and let \(\langle z_k \rangle_{k=0}^{\infty} \) be such that \(z_k = \sum_{j=0}^{k} f(j)x_j \). Show that \(\langle z_k \rangle_{k=0}^{\infty} \) converges only if \(x_k \rightarrow 0 \).

Problem 6: Monotone functions.
Let \(X \subseteq \mathbb{R} \) be compact and \(f : \mathbb{R} \rightarrow \mathbb{R} \) be monotone. Show that there is \(x \in X \) such that \(f(x) = \sup \{ f(x') : x' \in X \} \).